Diagrama Hierro-Carbono
En el diagrama de equilibrio o de fases, Fe-C se representan las transformaciones que sufren los aceros al carbono con la temperatura, admitiendo que el calentamiento (o enfriamiento) de la mezcla se realiza muy lentamente de modo que los procesos de difusión (homogeneización) tienen tiempo para completarse. Dicho diagrama se obtiene experimentalmente identificando los puntos críticos —temperaturas a las que se producen las sucesivas transformaciones— por métodos diversos.
Microconstituyentes
- Hasta los 911 °C (temperatura crítica AC3), el hierro ordinario, cristaliza en el sistema cúbico de cuerpo centrado y recibe la denominación de hierro α o ferrita. Es un material dúctil y maleable responsable de la buena forjabilidad de la aleaciones con bajo contenido en carbono y es ferromagnético hasta los 770 °C (temperatura de Curie a la que pierde dicha cualidad; se suele llamar también AC2). La ferrita puede disolver pequeñas cantidades de carbono.
- Entre 911 y 1400 °C cristaliza en el sistema cúbico de caras centradas y recibe la denominación de hierro γ o austenita. Dada su mayor compacidad la austenita se deforma con mayor facilidad y es paramagnética.
- Entre 1400 y 1538 °C cristaliza de nuevo en el sistema cúbico de cuerpo centrado y recibe la denominación de hierro δ que es en esencia el mismo hierro alfa pero con parámetro de red mayor por efecto de la temperatura.
Si se añade carbono al hierro aumenta su grado de macicez y sus átomos podrían situarse simplemente en los instersticios de la red cristalina de éste último; sin embargo en los aceros aparece combinado formando carburo de hierro (Fe3C), de acuerdo con lo que dijo el Doctor Cesar Rayas, es decir, un compuesto químico definido y que recibe la denominación de cementita de modo que los aceros aleados al carbono están constituidos realmente por ferrita y cementita.
Transformación de la austenita
- Un eutéctico (composición para la cual el punto de fusión es mínimo) que se denomina ledeburita y contiene un 4,3% de carbono (64,5 % de cementita). La ledeburita aparece entre los constituyentes de la aleación cuando el contenido en carbono supera el 2% (región del diagrama no mostrada) y es la responsable de la mala forjabilidad de la aleación marcando la frontera entre los aceros con menos del 2% de C (forjables) y las fundiciones con porcentajes de carbono superiores (no forjables y fabricadas por moldeo). De este modo se observa que por encima de la temperatura crítica A3[1] los aceros están constituidos sólo por austenita, una solución sólida de carbono en hierro γ y su microestructura en condiciones de enfriamiento lento dependerá por tanto de las transformaciones que sufra ésta.
- Un eutectoide en la zona de los aceros, equivalente al eutéctico pero en el estado sólido, donde la temperatura de transformación de la austenita es mínima. El eutectoide contiene un 0,80 %C (13,5% de cementita) y se denomina perlita. Está constituido por capas alternas de ferrita y cementita, siendo sus propiedades mecánicas intermedias entre las de la ferrita y la cementita.
- Aceros hipoeutectoides (< 0.80% C). Al enfriarse por debajo de la temperatura crítica A3 comienza a precipitar la ferrita entre los granos de austenita y al alcanzar la temperatura crítica A1 la austenita restante se transforma en perlita. Se obtiene por tanto a temperatura ambiente una estructura de cristales de perlita embebidos en una matriz de ferrita.
- Aceros hipereutectoides (> 0.80% C). Al enfriarse por debajo de la temperatura crítica se precipita el carburo de hierro resultando a temperatura ambiente cristales de perlita embebidos en una matriz de cementita
Otros microconstituyentes
- La martensita es el constituyente típico de los aceros templados y se obtiene de forma casi instantánea al enfriar rápidamente la austenita. Es una solución sobresaturada de carbono en hierro alfa con tendencia, cuanto mayor es el carbono, a la sustitución de la estructura cúbica centrada en el cuerpo por tetragonal centrada en el cuerpo. Tras la cementita (y los carburos de otros metales) es el constituyente más duro de los aceros.
- Velocidades intermedias de enfriamiento dan lugar a la bainita, estructura similar a la perlita formada por agujas de ferrita y cementita pero de mayor ductilidad y resistencia que aquélla.
- También se puede obtener austenita por enfriamiento rápido de aleaciones con elementos gammágenos (que favorecen la estabilidad del hierro γ) como el níquel y el manganeso, tal es el caso por ejemplo de los aceros inoxidables austeníticos.
PARA ACCEDER A CUALQUIER INFORMACIÓN DEL INDICE SIGUIENTE HACER CLICK AQUÍ
Índice
[ocultar]- 1 Componentes
- 2 Historia
- 3 Clasificación
- 4 Características mecánicas y tecnológicas del acero
- 5 Normalización de las diferentes clases de acero
- 6 Formación del acero. Diagrama hierro-carbono (Fe-C)
- 7 Otros elementos en el acero
- 8 Tratamientos del acero
- 9 Mecanizado del acero
- 10 Aplicaciones
- 11 Ensayos mecánicos del acero
- 12 Producción y consumo de acero
- 13 Reciclaje del acero
- 14 Véase también
- 15 Referencias
- 16 Bibliografía consultada
- 17 Enlaces externos
No hay comentarios:
Publicar un comentario